

FULL TANK!

An easy and fun game about water.

Suggested age group: 8 to 12 years

Number of players: 2 to 3
Time: 15-20 minutes

Design and Technology Education Group Homi Bhabha Centre for Science Education, TIFR

Year of Publication - 2022

FULL TANK!

Introduction

"Full Tank!" is a fun game developed for children which addresses the issue of water usage and wastage in daily life. The bedrock of any human settlement in the world is fresh water. There has been an increasing trend of losing this precious natural resource. Through this game, we hope to raise awareness about water as an essential resource which needs to be conserved. The game is an attempt to (1) expose children to an array of activities that put pressure on water resources, (2) emphasise that water, though renewable can deplete and much of daily life is inherently connected to availability of water and (3) provide comparisons between actions that are water-conserving and water-wasting.

About the game

Contents of the game: Instruction sheet, 4 Water activity card sheets (cut out the 9 cards from each sheet), 1 card sheet with 8 blank cards and 4 markers, and a Water Tank Scale board.

The game is played using the 'Water Tank Scale' board and water activity cards.

The markings on the tank scale board depict the water level in the tank. The water activity cards provide information on various human activities and the associated water usage and wastage.

The activity can be supervised by a teacher. All the new water activity cards made by students should be approved by the teacher before using them in the game.

FULL TANK!

Instructions

Players start by keeping their markers* at the 'Start' position. Shuffle all of the cards and place them in a deck.

Players in turns pick one card at a time and read aloud the water activity and the specifics of the activity. The others are asked to guess if the marker would rise or fall on the water tank scale.

Players then read out the rest of the card and accordingly move their marker up (rise) or down (fall).

> If the deck runs out of cards before the game ends, reshuffle the played-cards and use again. Reshuffling can take place at a maximum number of 2 (for 2 players) or 3 times (for 3 players).

The game ends when a player reaches '180L' or 'OL,'. But if no one reaches 180 or 0 even after the cards are consumed for the second or third time, then the player who is at the top of the water tank wins.
*Markers are provided at the bottom right on the DIY cards sheet. These can be cut and used by the players.

Create your own

 water cards!

Water Tank Scale Board

Construction

Using Rainwater

Rise

This helps to reduce pressure on existing water resources.

Washing Utensils

Using a Bucket of Water

Rise

Using bucket helps to regulate amount of water used.

Washing Clothes
Using a Bucket of Water

Using bucket helps to regulate amount of water used.

Cleaning Floors

Cleaning Floors
Using a Bucket of Water

Rise

Using a bucket helps to
regulate amount of water used.

Washing Utensils
Running Tap

Fall

Continuously flowing water from taps leads to unregulated use of water.

Cleaning Balcony
Using Pipe

Continuously flowing water from pipes leads to unregulated use of water.

Washing Clothes

Running Tap
 Fall

Continuously flowing water from taps leads to unregulated use of water.

Cleaning Balcony

Using Cloth
Using cloth and bucket helps to
regulate amount of water used.

Water Harvesting

Harvesting + Use

Rise

This helps to reduce pressure on existing water resources.

Dry Holi

Only Natural Colours
$\because:$
 Rise

This leads to less usage of water during the festival.

Maintenance of Wells

Maintained Properly

Proper maintenance of well ensures that well-water remains usable for long time.

Construction

In Summer
 Fall

This increases pressure on existing water resources especially in drought areas.

Maintenance of Wells

Pollutants in Well
 Fall

Pollution of well with waste
makes well-water unusable.

Having Bath

Using a Bucket of Water

Using a bucket helps to regulate amount of water used.

Watering Plants

Using Pipe

Fall
Continuously flowing water from pipes leads to unregulated use of water.

Installing Water Meter

Faulty Meter

0

Fall
Inability to detect faults in water consumption and storage leads to water wastage.

Watering Plants

During Rainy Season

©
 Fall

There is no need to waste water for watering plants during monsoons.

Using Water Purifier

Reverse Osmosis Purifier

Fall
For every litre of water purified, 3 litres of water is wasted in a RO purifier.

Buying Bottled Water

When Outdoors

Manufacturing bottled water is a heavily water-intensive process.

Watering Plants

In Afternoon
 Fall

Higher evaporation rates in noon leads to more water wastage.

Irrigation

Drip Irrigation

Rise

Water usage can be regulated in drip irrigation.

Using Discharged RO Water

You are reusing otherwise wasted water from a RO purifer.

Rise

Cleaning
Vegetables

Brushing Teeth

Using a Cup of Water

Rise

Using a cup helps to regulate amount of water used.

Washing Car

Using a Bucket of Water

0

 RiseUsing a bucket helps to regulate amount of water used.

Carrying own Water Bottle

When Outdoors

Brushing Teeth
Running Tap

Fall
Continuously flowing water from taps leads to unregulated use of water.

Water Harvesting

In Rainy Season

Rise
Storage aids in having water for later use.

Washing Car

Using Pipes
 Fall

Continuously flowing water from pipes leads to unregulated use of water.

Gardening

Drought Resistant Plants

Markers for 4 players

Background and Rationale

Motivation

The Environmental Sciences textbooks of the Maharashtra State Board cover a range of topics related to natural resources and the dependency of human beings on these. Air, water, natural gas and oil, flora and fauna, all find mention in the curriculum. While the chapters cover these themes at a broad level, there is scope to introduce the same issues using more locally relevant examples. The game "Full Tank" is an attempt to introduce the issues related to water conservation in the surroundings through play. Water forms a very important topic in the Environmental Sciences textbooks from grades 4 to 9 . Sub-topics in these books deal with use of water in various scenarios of natural, public and industrial sectors along with its associated impacts. The game tries to bring to the fore small actions by us that either lead to water wastage or water conservation. In the game, students need to become aware of their surroundings and identify ways in which water is being wasted or conserved. As the game is played, it is hoped over time, students will realise that these small conservation efforts when implemented at the community level contribute significantly in safeguarding this life-sustaining natural resource.

Rationale behind the design of the game

Research has often highlighted the importance of play and games in learning (Granic, Lobel \& Engels, 2014; Cooper, 2014). Moreover, when interacting with young children, play-based (Vygotsky, 1978) interventions/ activities and games tend to captivate them and direct their attention to the concerned issues (Malone, 1981; Sedig, 2008). Thus, the game "Full Tank" also attempts to discuss a relevant issue of our times (water conservation) in a simple playful manner. Tanks are common storage options in every household. The idea behind having a tank depicted as a scale, is to indicate that water though renewable is something that can become scarce and at times get exhausted. The scale tries to show that various human activities, as depicted in the 'Water Activity Cards' can have positive or negative effects on the water level. Of course, in reality, water conservation is not so simplistic and easy to implement. There are multiple factors that affect water usage. However, this game simplifies this issue for young children and aims to raise awareness about the connection between our actions and water wastage or conservation.

The game uses 'cards' as a physical medium to transact the play. It is a simple design which has the potential to deliver information in pieces. The most important feature of the game is that there is an option to make your own 'Water Activity Cards', so that players can bring in their own experiences and add them to the game, thereby enhancing the scope of the game. Some of the possible skills children may develop by undertaking this card-making exercise include, observation of surroundings, problem identification, looking at issues from multiple perspectives, communication and collaboration.

References

Cooper, S. (2014). A framework for scientific discovery through video games. New York: Morgan \& Claypool Publishers.

Granic, I., Lobel, A., \& Engels, R. C. (2014). The benefits of playing video games. American Psychologist, 69(1), 66-78.

Kapil, S. (2019, November). Nearly 80 per cent Indian households without piped water connection. Retrieved from https://www.downtoearth.org.in/news/water/nearly-80-per-cent-indian-households-without-piped-water-connection-67928

Malone, T. W. (1981). Toward a theory of intrinsically motivating instruction. Cognitive Science, 5(4), 333-369.

Sedig, K. (2008). From play to thoughtful learning: A design strategy to engage children with mathematical representations. Journal of Computers in Mathematics and Science Teaching, 27(1), 65-101.

Shaban, A., \& Sharma, R. N. (2007). Water consumption patterns in domestic households in major cities. Economic and Political Weekly 42(23).

Singh, O., Turkiya, S. A survey of household domestic water consumption patterns in rural semi-arid village, India. GeoJournal 78, 777-790. https://doi.org/10.1007/s10708-012-9465-7

Vishwanath, S. (2013, February). How much water does an urban citizen need?How much water does an urban citizen need?. Retrieved from https://www.thehindu.com/features/homes-and-gardens/how-much-water-does-an-urban-citizen-need/article4393634.ece

Vygotsky, L. S. (1978). The role of play in development. In Mind in society. Harvard: Harvard University Press.

Asian Development Research Institute (ADRI) Website:
https://www.adriindia.org/adri/india_water_facts
Ashoka Trust for Research in Ecology and the Environment (ATREE) Website: https://www.atree.org/programmes/water-land-society

India Water Portal Website: https://www.indiawaterportal.org

Credits: The game FULL TANK! was developed as part of the masters thesis project of Mr. Parth Dhond (National Institute of Design) at the Design and Technology Education Group, Homi Bhabha Centre for Science Education (HBCSE), Mumbai.

Advisor at HBCSE: Dr. Anisha Malhotra-Dalvi

Acknowledgments: Thanks to the students who participated during the development of the game and to all members of the Design and Technology Education Group and Integrated Lab at HBCSE.

